New Data and Nomenclatural Notes on the Tephritidae (Diptera) of Far East Russia. I

V. A. Korneyev
Schmalhausen Institute of Zoology, UA 252030 Kiev, Ukraine

New Data on Nomenclatural Notes on the Tephritidae (Diptera) of Far East Russia. I.
Korneyev V. A. — Erectovena Ito is resurrected from synonymy and shown to fit near Dirioxa Hendel rather than Acanthoneura Mcq. The following synonymy is established: Soita Walker, 1865 = Phantasmiella Hendel, 1914, syn. n.; Erectovena amurensis (Portschinsky, 1892), comb. n. (= Ptolina amurensis Portsch.) = Rioxoptilona speciosa Hendel, 1915, syn. n.; Acanthoneura pteropleuralis (Hendel, 1927) = A. melanostoma (Hering, 1941), syn. n. The concept of several Palaeartic genera and new records of Adraminae and Dacinae in Far East Russia are discussed.

Нові дані та нотатки по номенклатурі Tephritidae (Diptera) Далекого Сходу Росії. I.

Нові дані та замічення по номенклатурі Tephritidae (Diptera) Далегого Востоку Росії. I.
Корнеєв В. А. Erectovena Ito восстановлена из синонимии; показано, что этот род ближе к Dirioxa Hendel, чем к Acanthoneura Mcq. Установлены синонимы: Soita Walker, 1865 = Phantasmiella Hendel, 1914, syn. n.; Erectovena amurensis (Portschinsky, 1892), comb. n. (= Ptolina amurensis Portsch.) = Rioxoptilona speciosa Hendel, 1915 syn. n.; Acanthoneura pteropleuralis (Hendel, 1927) = A. melanostoma (Hering, 1941), syn. n. Обсуждаются систематическое положение и диагнозы ряда палеарктических родов и новые находки Adraminae и Dacinae на Дальнем Востоке России.

When preparing the tephritid chapter for the “Keys to Insects of Far East Russia” (Korneyev, Ovchinnikova, in prep.) several new synonyms and names that need to be resurrected from synonymy, and other previously unpublished nomenclatural changes were noted; new undescribed taxa were recognized, and some already known species and their host plants were recorded in Far East Russia for the first time.

An aim of this paper was to point out such improvements and additions to the Russian Far East fauna and to supply them with proper explanations and comments.

The type and other specimens are deposited in the following institutions:
Instytut Zoologiczny, Polska Akademia Nauk, Warszawa (IZPW); Natural History Museum, London (NHML), Naturhistorisches Museum Wien (NHMW), Schmalhausen Institute of Zoology, Kiev (SIZK), Természettudományi Múzeum Alattárá, Budapest (TMB), Zoological Institute of Russian Academy of Sciences, Saint-Petersburg (ZISP), Zoological Museum of Moscow University (ZMUM).
Subfamilial and tribal position uncertain

Matsumurania sapporensis (Matsumura)

Korneyev, 1990.

While dissecting a female of this species, the 1st instar larvae were found in the female abdomen. It shows that this species apparently is capable of viviparity, the feature rather common in some parasitoids Diptera, but not yet recorded for Tephritidae. Also, *M. sapporensis* has two rows of tiny postocular setae instead of single row of rather strong postoculars, as normally occurs in Tephritidae (except for Orталотрьетини). Up to present, males are unknown.

Subfamily Phytalmiinae

Tribe Acanthonevrini

Erectovena Ito

Included species. By far, the single species, *Erectovena amurensis* (Portsch.), comb. n., should be included. The species that could be putatively placed here, *Rixoxiptilona desperata* Hering, 1939, from Yunnan (China), Laos and Vietnam has long ventral rays of arista but no additional anepisternal bristle, and *Rixoxiptilona trigonina* Zia, 1963, from Chekiang (China), has short ventral rays of arista and no additional anepisternal bristle, and fits near the concept of *Dirioxa*, indicating that *Erectovena* apparently could be synonymized in subsequent revisions of Acanthonevrini.

Synonymy of this generic name depends on the concept of the genus *Acanthonevra* s. l. The latter genus is mostly Oriental in distribution and has never been revised or properly proved to be a monophyletic taxon. Hardy (1986) took it largely, including also species assigned to *Rixoxiptilona* Hendel and *Chaetomerella* de Meijere. Following that concept, *Erectovena* must be lumped together with *Acanthonevra*. For this reason Korneyev (1990) synonymized both names.

Recently, Perkmam and Hancock (1995) completely re-arranged generic composition of Acanthonevrini, and considered some Australian species that generally fit Hardy’s concept of *Acanthonevra* to belong to separate genera. In the key to Australian genera (Perkmam, Hancock, 1995), Asian species assigned to *Lenitovena* run to *Dirioxa* Hendel, 1928.

Erectovena easily differs among Asian Acanthonevrini by the 2 fr, well-developed ventral row of rays on arista, straight R_{4+5}, supernumery bristle at anteroventral margin of anepisternum and strong intercalary scutellar bristles, exceeding half of b scot length. It differs from *Dirioxa* also by well-developed ventral row of rays on arista.

Erectovena amurensis (Portschnk), comb. n.

Though the holotype of *R. speciosa* could not be located, its original description is informative and includes the most essential characters like the pattern of the mesonotal scutum and the abdomen, and the presence of the supernumerary bristle on the anepisternum. These characters fit well both the lectotype of *P. amurensis* and the Japanese specimens of *E. speciosa* (the latter described and figured by Ito). This allows to consider both names as synonyms.

Chaetomerella de Meijere, 1914 (type-species: *Chaetomerella nigrifacies* de Meijere, 1914).

This genus first was synonymized with *Phorelliosoma* by Hendel (1915; 1927), that subsequently was not accepted by Chen (1948) and Ito (1984). They used the generic name *Chaetomerella* de Meijere for the single species, *Ch. varipes* Chen from Kyusu, Sikoku and Taiwan, but none of them compared that species with the type species of *Chaetomerella*. Hardy (1986 b) considered *Chaetomerella nigrifacies* (known from the holotype female) as a synonym of *Acanthonevra lieuflinski* Hering that was collected in the same type locality on Java and has similar wing pattern, but differs by the undulate R_{2+3}, arista long pubescent and both prst 2a and prsc ac well-developed. Hardy writes that he had only the photograph of *Ch. nigrifacies* holotype when redescribing the species and insists that the arista rays and the lacking bristles could be merely rubbed off, and the R_{2+3} nearly straight could be an aberrant character state. This explanation hardly could be accepted taking into consideration that each of these characters occurs elsewhere in Acanthonevrini. For this reason I consider identity of both *Ch. nigrifacies* and the genus *Chaetomerella* to be uncertain, and prefer to use the generic name *Orienticaeleum* Ito until the concept of *Ch. nigrifacies* would be clarified.

Orienticaeleum Ito

The type species of this genus and “Chaetomerella” *varipes* Chen share reduced chaetotaxy of mesonotum (no prst and prsc), straight R_{2+3} and 2 fr + 2 or and shortly pubescent arista. *Ptilona* Wulp clearly differs from them by 1 fr + 1 or, long plumose arista and long black pubescence on katatergum. As the concept of the genus *Chaetomerella* was never explicitly defined, we consider all its possible synonyms separately. For these reasons,
"Chaetomeraella" varipes is keyed under Orienticaelum (Korneyev, Ovchinnikova, in preparation), but formally its original combination is retained.

Phorelliosoma Hendel, and its type species, Ph. hexachaeta Hendel, from Taiwan is another acanthonevra with 2 or 2 fr bristles, short rays of arista, no ipa, and rather short 1 scs (< 2/5 b scs). It certainly differs from the species here assigned to Orienticaelum by completely developed prst, prsc and dc. Mimospheira rubra Hardy from Vietnam fits near Ph. hexachaeta in the wing shape and pattern, and in the chaetotaxy, except for anterior or and kepest in M. rubra lacking, and mesonotum with no black spots. These two species apparently are closely related.

Acanthonevra Macquart

Comparing to my previous works (Korneyev, 1990, 1994), the concept of the Palearctic Acanthonevra is somewhat restricted herein. The species Ito assigned to Lentiovena Ito and A. fuscipennis share quite enough key characters to be considered as conspecific. These are as follows: arista rather long pubescent both dorsally and ventrally; 1 fr 2 or; mesonotal full set of bristles; no "intrapostalar"; 1 sc shorter than 1/3 of b sc; R3+1 undulate; t2 with 1 spur; phallapodema with partially separate veins; suryli rather long and broad; serrateaeae hemispheric, mushroom-like without nipples. The only essential difference is that A. trigna Mats., A. formosana End., A. amamoshimensis Shiraki as well as some other species have both the fore femur with abundance of black setae on antero- and postero-ventral surfaces and front tibia densely black setose while A. fuscipennis has neither femur nor tibia ornate in both sexes. This character is only of infrageneric importance.

Acanthonevra pteropleuralis (Hendel)

Hardy (1973) synonymized Acanthonevra pteropleuralis with A. formosana Enderlein, as he was unable to find any characters which seem to be reliable for differentiating these. Indeed, no reliable difference could be found between the female from Taiwan (NHMW) and the original description of Enderlein. In addition, the females from Amur and Japan are also very similar. Nevertheless the males from Amur has the epandrium and surstyli much narrow and long than in the specimen figured by Hardy (1973: fig. 35 f). This indicates that there are at least 2 superficially similar species in South East Asia that differ in the structure of genitalia. Until the synonymy of A. formosana and A. pteropleuralis is resolved in a proper way, I prefer to consider them as separate species.

The holotype of A. melanostoma is merely a melanistic specimen conspecific with yellow-headed specimens of A. pteropleuralis (from Primorsky Kray) that have same structure of male genitalia.

Subfamily Adraminae?

Soota Walker

The type species of Phanthasiella is very close or identical to Soota balltazarae Hardy, and the two generic names are certainly synonyms. Tribal placement of this genus is doubtful. The arrangement of fronto-orbital and scutellar bristles, structure of male and female genitalia are rather similar to those in Micronoeuna Permkan & Hancock, another genus of uncertain position that shows no adramine appearance. The only character that Soota shares with Adramini, long setulose katatergum has been shown to be the subject of convergence in Adraminae, on one hand, and Ptillon (Acanthonevriini), on the other (Korneyev, 1994).

Soota cylindrica (Hendel), comb. n.

cylindrica Hendel, 1914; 1915; Thompson et al., 1997 (Phanthasiella). — Ito, Tamaki, 1995 (Soota sp.), — balltazarae Hardy, 1974; Thompson et al., 1997 (Soota), possible, but unconfirmed junior synonym.

Ito and Tamaki (1995) have recently recorded an undetermined species of this genus from the Palearctic Japan, and the specimen they mentioned very probably belongs to S. cylindrica, known by far from Taiwan. The type specimens (Q) of Phanthasiella cylindrica from Taiwan and the holotype Q of Soota balltazarae from the Philippines share same wing pattern and the abdomen similarly marked with black, that suggests they may be conspecific. But their synonymization is still pending until more material is available.

Subfamily Adraminae

All the species of this tribe known for the Russian Far East except the following one were reviewed by Korneyev (1990).
Rhacochaena transmontana (Ito)

Ito, 1984.

Material. Southern Sakhalin: Tshekhov mountain, h=500 m, 28.06.1988, Q (Nesterov) (SIZK) (new for Russia).

Discussion. This species fits very near to European *Rh. toxoneura* Lw., and also is an inquinlne in the *Pontania* sawfly galls (A. G. Zinovjev, unpublished data). Apparently it is to be treated better as a subspecies of the former species.

Subfamily Dacinae

Tribe Gastrozonini

Only *Paragastrozona japonica* Shiraki was recorded up today (Richter, 1963).

Acrotaeniostola scutellaris (Matsumura)

Material. Southern Kurils: Kunashir, caldera of the Golovnin Volcano, Goriarie Lake, 16.08.1988, O (Kotenko) (SIZK) (new for Russia).

Acknowledgements. I thank Dr. Ruth Contrasers-Lichtenberg for arranging my visit to Naturhistorisches Museum Wien (NHMW) and for her kind assistance during my work at the collection. Thanks are also due to Dr. Bernhard Merz (ETH Zentrum, Zürich) for reading early drafts of the manuscript and critical notes.

References

